Formation of the yeast Mre11-Rad50-Xrs2 complex is correlated with DNA repair and telomere maintenance.

نویسندگان

  • M Chamankhah
  • W Xiao
چکیده

The yeast Mre11 is a multi-functional protein and is known to form a protein complex with Rad50 and Xrs2. In order to elucidate the relationship between Mre11 complex formation and its mitotic functions, and to determine domain(s) required for Mre11 protein interactions, we performed yeast two-hybrid and functional analyses with respect to Mre11 DNA repair and telomere maintenance. Evidence presented in this study indicates that the N-terminal region of Mre11 constitutes the core homo-dimerization and hetero-dimerization domain and is sufficient for Mre11 DNA repair and maintaining the wild-type telomere length. In contrast, a stretch of 134 amino acids from the extreme C-terminus, although essential for achieving a full level of self-association, is not required for the aforementioned Mre11 mitotic functions. Interestingly, deletion of these same 134 amino acids enhanced the interaction of Mre11 with Rad50 and Xrs2, which is consistent with the notion that this region is specific for meiotic functions. While Mre11 self-association alone is insufficient to provide the above mitotic activities, our results are consistent with a strong correlation between Mre11-Rad50-Xrs2 complex formation, mitotic DNA repair and telomere maintenance. This correlation was further strengthened by analyzing two mre11 phosphoesterase motif mutants ( mre11-2 and rad58S ), which are defective in DNA repair, telomere maintenance and protein interactions, and a rad50S mutant, which is normal in both complex formation and mitotic functions. Together, these results support and extend a current model regarding Mre11 structure and functions in mitosis and meiosis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Saccharomyces cerevisiae mre11(ts) allele confers a separation of DNA repair and telomere maintenance functions.

The yeast Mre11 protein participates in important cellular functions such as DNA repair and telomere maintenance. Analysis of structure-function relationships of Mre11 has led to identification of several separation-of-function mutations as well as N- and C-terminal domains essential for Mre11 meiotic and mitotic activities. Previous studies have established that there is a strong correlation b...

متن کامل

Isolation and characterization of novel xrs2 mutations in Saccharomyces cerevisiae.

The Mre11/Rad50/Xrs2 (MRX) complex is involved in DNA damage repair, DNA damage response, telomere control, and meiotic recombination. Here, we constructed and characterized novel mutant alleles of XRS2. The alleles with mutations in the C-terminal conserved domain of Xrs2 were grouped into the same class. Mutant Xrs2 in this class lacked Mre11 interaction ability. The second class, lacking a C...

متن کامل

The fission yeast Rad32 (Mre11)-Rad50-Nbs1 complex is required for the S-phase DNA damage checkpoint.

Mre11, Rad50, and Nbs1 form a conserved heterotrimeric complex that is involved in recombination and DNA damage checkpoints. Mutations in this complex disrupt the S-phase DNA damage checkpoint, the checkpoint which slows replication in response to DNA damage, and cause chromosome instability and cancer in humans. However, how these proteins function and specifically where they act in the checkp...

متن کامل

Differential suppression of DNA repair deficiencies of Yeast rad50, mre11 and xrs2 mutants by EXO1 and TLC1 (the RNA component of telomerase).

Rad50, Mre11, and Xrs2 form a nuclease complex that functions in both nonhomologous end-joining (NHEJ) and recombinational repair of DNA double-strand breaks (DSBs). A search for highly expressed cDNAs that suppress the DNA repair deficiency of rad50 mutants yielded multiple isolates of two genes: EXO1 and TLC1. Overexpression of EXO1 or TLC1 increased the resistance of rad50, mre11, and xrs2 m...

متن کامل

A novel function for the Mre11-Rad50-Xrs2 complex in base excision repair

The Mre11/Rad50/Xrs2 (MRX) complex in Saccharomyces cerevisiae has well-characterized functions in DNA double-strand break processing, checkpoint activation, telomere length maintenance and meiosis. In this study, we demonstrate an involvement of the complex in the base excision repair (BER) pathway. We studied the repair of methyl-methanesulfonate-induced heat-labile sites in chromosomal DNA i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nucleic acids research

دوره 27 10  شماره 

صفحات  -

تاریخ انتشار 1999